V = 3281.1 (8) Å³

Mo $K\alpha$ radiation $\mu = 0.85 \text{ mm}^{-1}$

3249 independent reflections

2562 reflections with $I > 2\sigma(I)$

T = 292 (2) K $0.10 \times 0.10 \times 0.10$ mm

 $R_{\rm int} = 0.073$

Z = 8

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[aqua(2,2-bipyridyl)(µ₃-pyridine-3,4-dicarboxylato)manganese(II)] monohydrate]

Xiu-Mei Li,^a Yan-Ling Niu,^a* Qing-Wei Wang^b and Bo Liu^b

^aDepartment of Chemistry, Tonghua Teachers College, Tonghua 134002, People's Republic of China, and ^bDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail: lixm20032006@163.com

Received 6 May 2007; accepted 14 May 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.092; data-to-parameter ratio = 12.7.

In the title compound, $\{[Mn(C_7H_3NO_4)(C_{10}H_8N_2)(H_2O)]$ - $H_2O\}_n$, the Mn(II) atom has a distorted *fac*-MnN₃O₃ octahedral coordination geometry, defined by one *N*,*N'*-chelating bipyridine molecule, one N-bonded pyridine-3,4-dicarboxylate (pdb) anion, two monodentate O-bonded pdb anions and one water molecule. Adjacent Mn^{II} ions are bridged by pairs of pdb ligands to form distinctive squares, which are further linked by other pdb ligands to result in a layered coordination polymer exhibiting a wave-like structure. Hydrogen bonds involving both the coordinated and uncoordinated water molecules help to consolidate the structure.

Related literature

For related literature, see: Biradha *et al.* (2000); Cao *et al.* (2003); Eddaoudi *et al.* (2001); Kortz *et al.* (2003); Moulton & Zaworotko (2001); Noro *et al.* (2000); Pan *et al.* (2003).

Experimental

Crystal data

$Mn(C_7H_3NO_4)(C_{10}H_8N_2)$ -	
$(H_2O)].H_2O$	
$M_r = 412.26$	
Orthorhombic, Pbca	
a = 15.614 (2) Å	
b = 12.4561 (18) Å	
c = 16.870 (3) Å	

Data collection

Bruker SMART CCD diffractometer Absorption correction: none 26510 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of
$wR(F^2) = 0.092$	independent and constrained
S = 1.01	refinement
3249 reflections	$\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$
256 parameters	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

$Mn1-O3^{i}$	2.1091 (16)	Mn1-N2	2.2401 (19)
Mn1-O1	2.1303 (15)	Mn1-N1	2.2888 (18)
Mn1-O6	2.2221 (17)	Mn1-N4 ⁱⁱ	2.3552 (18)

Symmetry codes: (i) -x + 1, -y, -z; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, z$.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$05 - H1W \cdot \cdot \cdot O2^{iii}$ $05 - H2W \cdot \cdot O4$ $06 - H3W \cdot \cdot \cdot O5^{iv}$	0.84(3) 0.85(3) 0.96(3)	2.01 (3) 1.93 (3) 1.90 (4)	2.838 (3) 2.779 (3) 2.834 (2)	174 (3) 170 (3) 165 (3)
$O6-H4W \cdots O2$	0.82	1.96	2.659 (2)	143

Symmetry codes: (iii) $-x + \frac{1}{2}, -y, z + \frac{1}{2}$; (iv) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

We thank Professors Ning-Hai Hu and Heng-Qing Jia from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, for their help.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2406).

References

- Biradha, K., Hongo, Y. & Fujita, M. (2000). Angew. Chem. Int. Ed. **39**, 3843–3846.
- Bruker (1998). SMART. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Cao, M. H., Hu, C. W. & Wang, E. B. (2003). J. Am. Chem. Soc. 125, 11196–11199.

- Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–356.
- Kortz, U., Hamzeh, S. S. & Nasser, N. A. (2003). *Chem. Eur. J.* **9**, 2945–2951. Moulton, B. & Zaworotko, M. J. (2001). *Chem. Rev.* **101**, 1629–1637.
- Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2082–2086.
- Pan, L., Liu, H. M., Kelly, S. P., Huang, X. Y. & Li, J. (2003). Chem. Commun. pp. 854–856.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m1737-m1738 [doi:10.1107/S1600536807023586]

Poly[[aqua(2,2-bipyridyl)(#3-pyridine-3,4-dicarboxylato)manganese(II)] monohydrate]

X.-M. Li, Y.-L. Niu, Q.-W. Wang and B. Liu

Comment

Due to both their structural and topological novelty as well as for their potential applications as functional materials, the rational design of inorganic coordination networks has attracted much recent attention (Biradha *et al.*, 2000, Moulton *et al.*, 2001, Eddaoudi *et al.*, 2001, Cao *et al.*, 2003, Kortz *et al.*, 2003). To date, a variety of extended frameworks have been obtained through the use of polydentate ligands, such as polycarboxylic acids (Pan *et al.*, 2003, Noro *et al.*, 2000). Herein, we report the crystal structure of the title compound, (I), which shows a layered polymeric structure.

The Mn^{II} ion in (I) has a distorted octahedral coordination geometry, defined by three N atoms and three carboxyl O atoms from chelating bipy, pyridine-3,4-dicarboxylate (pdb) ligands and one water molecule (Fig. 1, Table 1) The polymeric layers in (I) feature squares constructed from two Mn^{II} ions bridged by two pdb ligands. Such squares are further connected by pdb ligands, forming a sheet (Fig. 2). A network of O—H···O hydrogen bonds arising from the water molecules (Table 2) helps to consolidate the structure.

Experimental

Compound (I) was prepared from a mixture of $Mn(CH_3CO_2)_2 \cdot 4H_2O$ (0.120 g, 0.5 mmol), pyridine-3,4-dicarboxylic acid (0.083 g, 0.5 mmol), 2,2-bipyridine (0.078 g, 0.5 mmol) and H₂O (18 ml) in a 30 ml Teflon-lined autoclave under autogenous pressure at 423 K for 5 d. After cooling to room temperature, yellow crystals suitable for X-ray structure analysis were obtained. Analysis, calculated for $C_{17}H_{15}MnN_3O_6$: C 49.5, H 3.7, N 10.2%; found: C 49.4, H 3.6, N 10.0%.

Refinement

The C-bonded H atoms and H4W were generated geometrically (C—H = 0.93 Å, O—H =0.82 Å) and refined as riding with $U_{iso}(H)=1.2U_{eq}(C)$ or $U_{iso}(H4W)=0.05$ Å². The other H atoms of the water molecules were located in difference maps and their positions and U_{iso} values were freely refined.

Figures

Fig. 1. The asymmetric unit of (I) expanded to show the coordination of the Mn atom drawn with 30% probability displacement ellipsoids (arbitrary spheres for the H atoms). Atoms O3I and N4I are at the symmetry positions (1 - x, -y, -z) and (1/2 - x, 3/2 - y, z) respectively.

Fig. 2. Part of a polymeric layer in (I). Mn atoms are represented by green hatched spheres, N atoms by blue dotted spheres, O atoms by red grid spheres, and C atoms by grey spheres. H atoms have been omitted for clarity.

Poly[[aqua(2,2-bipyridyl)(µ₃pyridine-3,4-dicarboxylato)manganese(II)] monohydrate]

Crystal data	
$[Mn(C_7H_3NO_4)(C_{10}H_8N_2)(H_2O)]$ ·H ₂ O	$F_{000} = 1688$
$M_r = 412.26$	$D_{\rm x} = 1.669 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	$\theta = 2.4 - 26.1^{\circ}$
a = 15.614 (2) Å	$\mu = 0.85 \text{ mm}^{-1}$
<i>b</i> = 12.4561 (18) Å	T = 292 (2) K
c = 16.870 (3) Å	Block, yellow
V = 3281.1 (8) Å ³	$0.10 \times 0.10 \times 0.10 \text{ mm}$
Z = 8	

Data collection

Bruker SMART CCD diffractometer	2562 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.073$
Monochromator: graphite	$\theta_{\rm max} = 26.1^{\circ}$
T = 292(2) K	$\theta_{\min} = 2.4^{\circ}$
ω scans	$h = -19 \rightarrow 19$
Absorption correction: none	$k = -15 \rightarrow 15$
26510 measured reflections	$l = -20 \rightarrow 20$
3249 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.092$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0541P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{max} < 0.001$
3249 reflections	$\Delta \rho_{max} = 0.55 \text{ e } \text{\AA}^{-3}$
256 parameters	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods returning a construction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mn1	0.43851 (2)	0.18948 (3)	-0.06880 (2)	0.02453 (12)
C13	0.31857 (13)	-0.12791 (17)	0.07018 (13)	0.0244 (5)
O2	0.30663 (11)	0.00140 (13)	-0.12384 (10)	0.0383 (4)
01	0.38982 (9)	0.04326 (11)	-0.02127 (9)	0.0296 (4)
N2	0.51764 (11)	0.25010 (14)	0.03251 (11)	0.0264 (4)
O5	0.26473 (12)	0.13867 (14)	0.26106 (12)	0.0387 (4)
C16	0.22594 (13)	-0.15776 (17)	-0.04054 (13)	0.0257 (5)
H16A	0.2094	-0.1383	-0.0915	0.031*
N4	0.18302 (11)	-0.23754 (15)	-0.00607 (11)	0.0295 (4)
N1	0.49150 (11)	0.35320 (15)	-0.10606 (11)	0.0269 (4)
C14	0.27565 (14)	-0.21355 (18)	0.10597 (15)	0.0321 (5)
H14A	0.2913	-0.2358	0.1566	0.038*
C15	0.20980 (15)	-0.26556 (19)	0.06634 (14)	0.0331 (6)
H4A	0.1829	-0.3229	0.0914	0.040*
C1	0.52431 (15)	0.20098 (19)	0.10279 (15)	0.0339 (6)
H1A	0.4924	0.1391	0.1117	0.041*
C2	0.57649 (16)	0.2385 (2)	0.16233 (15)	0.0422 (6)

0.5797	0.2024	0.2105	0.051*
0.29349 (13)	-0.10105 (16)	-0.00670 (12)	0.0227 (5)
0.33328 (13)	-0.01213 (16)	-0.05444 (13)	0.0242 (5)
0.47938 (15)	0.40019 (19)	-0.17620 (14)	0.0332 (5)
0.4357	0.3740	-0.2083	0.040*
0.52727 (16)	0.48483 (19)	-0.20416 (15)	0.0368 (6)
0.5160	0.5157	-0.2532	0.044*
0.56416 (13)	0.33975 (18)	0.01934 (13)	0.0255 (5)
0.61805 (15)	0.38030 (19)	0.07749 (14)	0.0347 (6)
0.6503	0.4416	0.0677	0.042*
0.62353 (16)	0.3293 (2)	0.14975 (16)	0.0428 (6)
0.6588	0.3564	0.1894	0.051*
0.55396 (13)	0.39158 (18)	-0.05899 (13)	0.0261 (5)
0.60589 (17)	0.4750 (2)	-0.08444 (15)	0.0442 (7)
0.6502	0.4993	-0.0522	0.053*
0.59225 (18)	0.5219 (2)	-0.15697 (16)	0.0456 (7)
0.6268	0.5782	-0.1739	0.055*
0.38450 (14)	-0.06848 (17)	0.11963 (12)	0.0263 (5)
0.45903 (10)	-0.10620 (13)	0.12223 (10)	0.0372 (4)
0.35811 (11)	0.00841 (14)	0.15903 (10)	0.0412 (4)
0.36338 (11)	0.18742 (13)	-0.18066 (10)	0.0335 (4)
0.3344	0.1326	-0.1825	0.050*
0.2400 (18)	0.100 (2)	0.2944 (18)	0.053 (9)*
0.2883 (19)	0.093 (3)	0.2303 (18)	0.064 (10)*
0.322 (2)	0.241 (3)	-0.195 (2)	0.080 (11)*
	0.5797 0.29349 (13) 0.33328 (13) 0.47938 (15) 0.4357 0.52727 (16) 0.5160 0.56416 (13) 0.61805 (15) 0.6503 0.62353 (16) 0.6588 0.55396 (13) 0.60589 (17) 0.6502 0.59225 (18) 0.6268 0.38450 (14) 0.45903 (10) 0.35811 (11) 0.36338 (11) 0.3344 0.2400 (18) 0.2883 (19) 0.322 (2)	0.5797 0.2024 $0.29349(13)$ $-0.10105(16)$ $0.33328(13)$ $-0.01213(16)$ $0.47938(15)$ $0.40019(19)$ 0.4357 0.3740 $0.52727(16)$ $0.48483(19)$ 0.5160 0.5157 $0.56416(13)$ $0.33975(18)$ $0.61805(15)$ $0.38030(19)$ 0.6503 0.4416 $0.62353(16)$ $0.3293(2)$ 0.6588 0.3564 $0.55396(13)$ $0.39158(18)$ $0.60589(17)$ $0.4750(2)$ 0.6562 0.4993 $0.59225(18)$ $0.5219(2)$ 0.6268 0.5782 $0.38450(14)$ $-0.06848(17)$ $0.45903(10)$ $-0.10620(13)$ $0.35811(11)$ $0.18742(13)$ 0.3344 0.1326 $0.2400(18)$ $0.100(2)$ $0.283(19)$ $0.241(3)$	0.5797 0.2024 0.2105 $0.29349(13)$ $-0.10105(16)$ $-0.00670(12)$ $0.33328(13)$ $-0.01213(16)$ $-0.05444(13)$ $0.47938(15)$ $0.40019(19)$ $-0.17620(14)$ 0.4357 0.3740 -0.2083 $0.52727(16)$ $0.48483(19)$ $-0.20416(15)$ 0.5160 0.5157 -0.2532 $0.56416(13)$ $0.33975(18)$ $0.01934(13)$ $0.61805(15)$ $0.38030(19)$ $0.07749(14)$ 0.6503 0.4416 0.0677 $0.62353(16)$ $0.3293(2)$ $0.14975(16)$ 0.6588 0.3564 0.1894 $0.55396(13)$ $0.39158(18)$ $-0.05899(13)$ $0.60589(17)$ $0.4750(2)$ $-0.08444(15)$ 0.6502 0.4993 -0.0522 $0.59225(18)$ $0.5219(2)$ $-0.15697(16)$ 0.6268 0.5782 -0.1739 $0.38450(14)$ $-0.06848(17)$ $0.11963(12)$ $0.45903(10)$ $-0.10620(13)$ $0.12223(10)$ $0.35811(11)$ $0.18742(13)$ $-0.18066(10)$ 0.3344 0.1326 -0.1825 $0.2400(18)$ $0.100(2)$ $0.2944(18)$ $0.222(2)$ $0.241(3)$ $-0.195(2)$

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.02398 (19)	0.01951 (19)	0.0301 (2)	-0.00234 (13)	-0.00148 (14)	0.00011 (13)
C13	0.0207 (10)	0.0215 (11)	0.0309 (12)	0.0045 (8)	0.0042 (9)	-0.0009 (9)
O2	0.0512 (10)	0.0328 (9)	0.0309 (10)	-0.0135 (8)	-0.0092 (8)	0.0064 (7)
01	0.0304 (8)	0.0228 (8)	0.0356 (9)	-0.0064 (7)	-0.0020 (7)	0.0023 (7)
N2	0.0245 (9)	0.0243 (10)	0.0304 (11)	-0.0005 (8)	0.0017 (8)	0.0009 (8)
O5	0.0482 (11)	0.0335 (10)	0.0342 (10)	0.0002 (9)	0.0064 (9)	0.0004 (9)
C16	0.0287 (11)	0.0239 (11)	0.0245 (11)	0.0004 (9)	0.0007 (9)	0.0005 (9)
N4	0.0278 (10)	0.0269 (10)	0.0337 (11)	-0.0040 (8)	-0.0004 (9)	0.0010 (8)
N1	0.0250 (10)	0.0260 (10)	0.0297 (11)	-0.0031 (8)	-0.0018 (8)	0.0023 (8)
C14	0.0333 (13)	0.0332 (13)	0.0297 (13)	-0.0003 (10)	-0.0022 (10)	0.0074 (10)
C15	0.0325 (13)	0.0280 (13)	0.0388 (14)	-0.0083 (10)	0.0009 (11)	0.0063 (10)
C1	0.0320 (12)	0.0322 (14)	0.0376 (14)	-0.0019 (10)	0.0020 (11)	0.0073 (11)
C2	0.0431 (15)	0.0502 (17)	0.0334 (15)	0.0013 (12)	-0.0033 (12)	0.0115 (12)
C12	0.0224 (10)	0.0181 (11)	0.0275 (12)	0.0005 (8)	0.0047 (9)	-0.0023 (9)
C11	0.0233 (11)	0.0176 (11)	0.0317 (13)	0.0013 (9)	0.0015 (9)	-0.0017 (9)
C10	0.0330 (13)	0.0352 (14)	0.0314 (13)	-0.0052 (10)	-0.0044 (10)	0.0013 (10)
C9	0.0444 (14)	0.0333 (14)	0.0328 (14)	-0.0035 (11)	0.0013 (11)	0.0069 (11)
C5	0.0223 (11)	0.0241 (11)	0.0301 (12)	0.0007 (9)	0.0012 (9)	-0.0026 (9)
C4	0.0347 (13)	0.0306 (13)	0.0387 (15)	-0.0080 (10)	-0.0065 (11)	-0.0003 (10)

C3	0.0401 (15)	0.0492 (17)	0.0391 (15)	-0.0034 (12)	-0.0112 (12)	-0.0023 (12)
C6	0.0250 (11)	0.0220 (11)	0.0311 (13)	-0.0016 (9)	0.0015 (9)	-0.0033 (9)
C7	0.0466 (16)	0.0447 (16)	0.0412 (16)	-0.0250 (13)	-0.0087 (12)	0.0040 (12)
C8	0.0552 (16)	0.0407 (16)	0.0408 (16)	-0.0225 (13)	-0.0001 (13)	0.0075 (12)
C17	0.0298 (12)	0.0271 (12)	0.0219 (12)	0.0013 (10)	0.0031 (9)	0.0041 (9)
O3	0.0258 (9)	0.0431 (10)	0.0428 (11)	0.0092 (7)	-0.0034 (7)	-0.0098 (8)
O4	0.0454 (10)	0.0365 (10)	0.0416 (11)	0.0110 (8)	-0.0012 (8)	-0.0153 (8)
06	0.0355 (9)	0.0281 (9)	0.0370 (10)	-0.0046 (7)	-0.0038 (8)	-0.0006 (7)
Geometric p	arameters (Å, °)					
Mn1—O3 ⁱ		2.1091 (16)	C15-	-H4A	0.93	00
Mn1—O1		2.1303 (15)	C1—	·C2	1.37	5 (4)
Mn1—O6		2.2221 (17)	C1—	H1A	0.93	00
Mn1—N2		2.2401 (19)	C2—	·C3	1.36	5 (4)
Mn1—N1		2.2888 (18)	C2—	H2A	0.93	00
Mn1—N4 ⁱⁱ		2.3552 (18)	C12-	C11	1.50	4 (3)
C13—C12		1.395 (3)	C10–	—С9	1.37	6 (3)
C13—C14		1.397 (3)	C10-	-H10A	0.93	00
C13—C17		1.518 (3)	С9—	·C8	1.37	0 (4)
O2—C11		1.254 (3)	С9—	H9A	0.93	00
01—C11		1.252 (2)	С5—	·C4	1.38	8 (3)
N2—C1		1.338 (3)	С5—	·C6	1.47	9 (3)
N2—C5		1.351 (3)	C4—	·C3	1.37	7 (4)
O5—H1W		0.83 (3)	C4—	H4B	0.93	00
O5—H2W		0.86 (3)	С3—	H3A	0.93	00
C16—N4		1.332 (3)	С6—	·C7	1.38	6 (3)
C16—C12		1.392 (3)	С7—	·C8	1.37	2 (4)
C16—H16A		0.9300	С7—	H7A	0.93	00
N4—C15		1.337 (3)	C8—	H8A	0.93	00
N4—Mn1 ⁱⁱⁱ		2.3552 (18)	C17-	04	1.23	6 (3)
N1-C10		1.334 (3)	C17–	03	1.25	6 (2)
N1-C6		1.345 (3)	03—	-Mn1 ⁱ	2.10	91 (16)
C14—C15		1.387 (3)	O6—	-H4W	0.82	00
C14—H14A		0.9300	06—	-H3W	0.96	(3)
O3 ⁱ —Mn1—	01	90.63 (6)	C3—	C2—C1	119.	1 (2)
O3 ⁱ —Mn1—	O6	91.82 (6)	С3—	C2—H2A	120.	4
O1—Mn1—0	D6	96.97 (6)	C1—	C2—H2A	120.	4
O3 ⁱ —Mn1—	N2	94.21 (6)	C16–	C12C13	118.	18 (19)
O1-Mn1-N	N2	101.41 (6)	C16–	C12C11	117.	85 (19)
06—Mn1—N	N2	160.57 (6)	C13–	C12C11	123.	94 (19)
O3 ⁱ —Mn1—	N1	92.67 (7)	01—	-C11—O2	125.	2 (2)
01—Mn1—N	N1	173.81 (6)	01—	-C11—C12	117.	24 (19)
06—Mn1—N	N1	88.16 (6)	O2—	-C11—C12	117.	50 (18)
N2—Mn1—N	N1	73.13 (7)	N1—	-С10—С9	124.	3 (2)
O3 ⁱ —Mn1—	N4 ⁱⁱ	173.24 (7)	N1—	-C10—H10A	117.	9
01—Mn1—N	N4 ⁱⁱ	82.73 (6)	С9—	C10—H10A	117.	9

O6—Mn1—N4 ⁱⁱ	87.75 (6)	C8—C9—C10	117.5 (2)
N2—Mn1—N4 ⁱⁱ	88.36 (6)	С8—С9—Н9А	121.3
N1—Mn1—N4 ⁱⁱ	94.06 (6)	С10—С9—Н9А	121.3
C12—C13—C14	116.8 (2)	N2—C5—C4	120.7 (2)
C12—C13—C17	125.75 (19)	N2—C5—C6	116.74 (19)
C14—C13—C17	117.39 (19)	C4—C5—C6	122.5 (2)
C11—O1—Mn1	123.67 (14)	C3—C4—C5	119.7 (2)
C1—N2—C5	118.81 (19)	C3—C4—H4B	120.1
C1—N2—Mn1	124.39 (15)	С5—С4—Н4В	120.1
C5—N2—Mn1	116.73 (15)	C2—C3—C4	119.1 (2)
H1W—O5—H2W	103 (3)	С2—С3—НЗА	120.5
N4—C16—C12	125.5 (2)	С4—С3—НЗА	120.5
N4—C16—H16A	117.2	N1—C6—C7	120.5 (2)
C12-C16-H16A	117.2	N1—C6—C5	116.75 (19)
C16—N4—C15	115.85 (19)	C7—C6—C5	122.7 (2)
C16—N4—Mn1 ⁱⁱⁱ	119.81 (15)	C8—C7—C6	120.3 (2)
C15—N4—Mn1 ⁱⁱⁱ	124.16 (15)	C8—C7—H7A	119.9
C10—N1—C6	118.1 (2)	С6—С7—Н7А	119.9
C10—N1—Mn1	125.69 (15)	C9—C8—C7	119.3 (2)
C6—N1—Mn1	114.62 (14)	С9—С8—Н8А	120.3
C15-C14-C13	120.3 (2)	С7—С8—Н8А	120.3
C15-C14-H14A	119.9	O4—C17—O3	125.4 (2)
C13-C14-H14A	119.9	O4—C17—C13	116.58 (19)
N4—C15—C14	123.4 (2)	O3—C17—C13	117.72 (19)
N4—C15—H4A	118.3	C17—O3—Mn1 ⁱ	150.70 (16)
C14—C15—H4A	118.3	Mn1—O6—H4W	109.5
N2—C1—C2	122.5 (2)	Mn1—O6—H3W	124 (2)
N2—C1—H1A	118.7	H4W—O6—H3W	101.7
C2—C1—H1A	118.7		

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) -*x*+1/2, *y*+1/2, *z*; (iii) -*x*+1/2, *y*-1/2, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O5—H1W····O2 ^{iv}	0.84 (3)	2.01 (3)	2.838 (3)	174 (3)
O5—H2W…O4	0.85 (3)	1.93 (3)	2.779 (3)	170 (3)
O6—H3W…O5 ^v	0.96 (3)	1.90 (4)	2.834 (2)	165 (3)
O6—H4W…O2	0.82	1.96	2.659 (2)	143
Symmetry codes: (iv) $-r+1/2 - v + 1/2$: (v) r	-1+1/2 = -1/2			

Symmetry codes: (iv) -x+1/2, -y, z+1/2; (v) x, -y+1/2, z-1/2.

Fig. 1

